The effect of periconceptional folic acid use on embryonic growth of the cerebellum

Marjon Gijtenbeek, MSc

Departments of Obstetrics & Gynaecology and Neonatology
Erasmus MC, Rotterdam, the Netherlands

AIM: to investigate whether the moment of initiation of periconceptional folic acid (FA) use predicts the growth of the embryonic cerebellum.

Materials & methods

Cerebellar measurements
- Transcerebellar diameter (TCD)
- Left cerebellar diameter (LCD)
- Right cerebellar diameter (RCD)

Datasets
- 8+0 – 12+6 weeks GA

Analysis
- SAS: Linear mixed model analysis
- SPSS: Z-score analysis

Study population

Materials & methods

Folate and the cerebellum

Folate (general and human studies)
- Important in cell cycle regulation, amino acid biosynthesis, protein processing, DNA nucleotide synthesis and methylation
- Prenatal deficiency associated with neural tube defects and congenital anomalies

Brain development (animal studies)
- Folate deficiency in early pregnancy increased apoptosis fetal forebrain, decreased fetal brain weight
- MTHFR deficiency postnatal decreased cerebellar size

Study Design

- Embedded in the Rotterdam Predict study (periconceptional cohort study)
- Inclusion criteria: 18+, informed consent
- Exclusion criteria:
 - Non-viable pregnancies
 - Multiple pregnancies
 - Chromosomal disorders
 - Intra-uterine fetal deaths
 - Major congenital anomalies
 - Pregnancies after oocyte donations
 - Pregnancies dated on CRL
 - Unknown use of folic acid supplements

- Materials:
 - Three-dimensional ultrasound (3D-US) from 6+0 to 12+6 weeks GA
 - Questionnaires

Garel et al, 2011
Larsen, 2001
Carlson, 2004

Folate and the cerebellum

Cerebellum origin

Folate (general and human studies)

Important in cell cycle regulation, amino acid biosynthesis, protein processing, DNA nucleotide synthesis and methylation

Prenatal deficiency associated with neural tube defects and congenital anomalies

Brain development (animal studies)

Folate deficiency in early pregnancy increased apoptosis fetal forebrain, decreased fetal brain weight

MTHFR deficiency postnatal decreased cerebellar size

AIM: to investigate whether the moment of initiation of periconceptional folic acid (FA) use predicts the growth of the embryonic cerebellum.

Study Design

- Embedded in the Rotterdam Predict study (periconceptional cohort study)
- Inclusion criteria: 18+, informed consent
- Exclusion criteria:
 - Non-viable pregnancies
 - Multiple pregnancies
 - Chromosomal disorders
 - Intra-uterine fetal deaths
 - Major congenital anomalies
 - Pregnancies after oocyte donations
 - Pregnancies dated on CRL
 - Unknown use of folic acid supplements

- Materials:
 - Three-dimensional ultrasound (3D-US) from 6+0 to 12+6 weeks GA
 - Questionnaires

Garel et al, 2011
Larsen, 2001
Carlson, 2004

Folate and the cerebellum

Cerebellum origin

Folate (general and human studies)

Important in cell cycle regulation, amino acid biosynthesis, protein processing, DNA nucleotide synthesis and methylation

Prenatal deficiency associated with neural tube defects and congenital anomalies

Brain development (animal studies)

Folate deficiency in early pregnancy increased apoptosis fetal forebrain, decreased fetal brain weight

MTHFR deficiency postnatal decreased cerebellar size

AIM: to investigate whether the moment of initiation of periconceptional folic acid (FA) use predicts the growth of the embryonic cerebellum.

Study Design

- Embedded in the Rotterdam Predict study (periconceptional cohort study)
- Inclusion criteria: 18+, informed consent
- Exclusion criteria:
 - Non-viable pregnancies
 - Multiple pregnancies
 - Chromosomal disorders
 - Intra-uterine fetal deaths
 - Major congenital anomalies
 - Pregnancies after oocyte donations
 - Pregnancies dated on CRL
 - Unknown use of folic acid supplements

- Materials:
 - Three-dimensional ultrasound (3D-US) from 6+0 to 12+6 weeks GA
 - Questionnaires

Garel et al, 2011
Larsen, 2001
Carlson, 2004

Folate and the cerebellum

Cerebellum origin

Folate (general and human studies)

Important in cell cycle regulation, amino acid biosynthesis, protein processing, DNA nucleotide synthesis and methylation

Prenatal deficiency associated with neural tube defects and congenital anomalies

Brain development (animal studies)

Folate deficiency in early pregnancy increased apoptosis fetal forebrain, decreased fetal brain weight

MTHFR deficiency postnatal decreased cerebellar size

AIM: to investigate whether the moment of initiation of periconceptional folic acid (FA) use predicts the growth of the embryonic cerebellum.

Study Design

- Embedded in the Rotterdam Predict study (periconceptional cohort study)
- Inclusion criteria: 18+, informed consent
- Exclusion criteria:
 - Non-viable pregnancies
 - Multiple pregnancies
 - Chromosomal disorders
 - Intra-uterine fetal deaths
 - Major congenital anomalies
 - Pregnancies after oocyte donations
 - Pregnancies dated on CRL
 - Unknown use of folic acid supplements

- Materials:
 - Three-dimensional ultrasound (3D-US) from 6+0 to 12+6 weeks GA
 - Questionnaires

Garel et al, 2011
Larsen, 2001
Carlson, 2004
Population characteristics: pre- vs postconceptional initiation of FA

<table>
<thead>
<tr>
<th>Variable</th>
<th>All (n = 186)</th>
<th>Preconception FA (n=150)</th>
<th>Postconception FA (n=36)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs, mean (SD)</td>
<td>32.0 (4.8)</td>
<td>32.1 (4.7)</td>
<td>31.6 (5.3)</td>
<td>NS</td>
</tr>
<tr>
<td>Ethnicity*, n (%):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td>144 (77.8)</td>
<td>125 (83.9)</td>
<td>19 (52.8)</td>
<td>0.000</td>
</tr>
<tr>
<td>Western-other</td>
<td>16 (8.6)</td>
<td>13 (8.7)</td>
<td>3 (8.3)</td>
<td></td>
</tr>
<tr>
<td>Non-western</td>
<td>25 (13.5)</td>
<td>11 (7.4)</td>
<td>14 (38.9)</td>
<td></td>
</tr>
<tr>
<td>Education*, n (%):</td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Low</td>
<td>15 (8.1)</td>
<td>13 (8.7)</td>
<td>2 (5.7)</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>62 (33.5)</td>
<td>47 (31.3)</td>
<td>15 (42.9)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>108 (58.4)</td>
<td>90 (60.0)</td>
<td>18 (51.4)</td>
<td></td>
</tr>
<tr>
<td>BMI, kg/m², median (range)</td>
<td>24.5 (18.6 – 38.3)</td>
<td>24.4 (18.6 – 34.9)</td>
<td>24.9 (19.1 – 38.3)</td>
<td>NS</td>
</tr>
<tr>
<td>Primigravida *, n (%)</td>
<td>69 (37.1)</td>
<td>64 (42.7)</td>
<td>5 (13.9)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

* = range, / = missing

Total cerebellar diameter / CRL and moment of folic acid initiation

Model
1. Univariate
2. Adjusted after stepwise backward elimination. Adjusted for mode of conception, ethnicity, gravidity and their interaction with GA

Preconceptional FA:

<table>
<thead>
<tr>
<th>TCD / CRL</th>
<th>β (SE)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preadjusted</td>
<td>-0.08244 (0.02276)</td>
<td>0.0007</td>
</tr>
<tr>
<td>Adjusted</td>
<td>-0.08791 (0.02587)</td>
<td>0.0013</td>
</tr>
</tbody>
</table>

GA Difference in TCD between pre and postconceptional FA initiation

9a \pm 0.002 (8.2%)
12a \pm 0.012 (7.0%)

Preconception initiation of FA use is associated with a larger cerebellum, compared to postconception initiation

The first study on the effect of periconceptional folic acid supplements on human cerebellar growth trajectories in the first trimester.

Limitations
- Selected population
- Answers on questionnaires are self-reported
- Relatively low success rate of the cerebellum measurements

Implication
- Is a larger first trimester cerebellum beneficial?

Future
- To compare 1st trimester cerebellar growth to 2nd trimester cerebellar growth.
- To correlate 1st trimester cerebellar growth to birth outcomes.

Acknowledgements
- Department of Obstetrics and Prenatal Medicine
 - Drs. A. Gotink
 - Dr. N. Exalto
 - Dr. I.A.L. Groenenberg
 - Drs. E.M. van Uitert
 - Dr. J. Dudink
 - Prof. Dr. Steegers
 - Prof. Dr. R.P.M. Steegers-Theunissen
- Department of Biostatistics
 - Drs. S.P. Willemsen