Transfer to ICU: hematological malignancies and intensive care support

N. Kusadasi MD. PhD.
Hematologist-Intensivist
Department of Intensive Care Unit
Erasmus Medical Center Rotterdam; Vlietland Hospital Schiedam
The Netherlands
ICU Mantra

I will come for consultation, but there is nothing to manage, patients with hematological malignancies all die.
History: ICU mortality

- 1988: n=60: 79%
 Lloyd-Thomas et al BMJ 296:1025

- 1989: n=40 (pneumonia): 98%
 Denardo et al Crit Care Med 17(1):4

- 1993: 2=28: ventilated patients: 96%
 Paz et al Chest 104:527
IC support: hematological malignancies

- Does it make sense?
 - Which patients?
 - Prognostic factors?
 - Time of admission?
 - For how long?
 - Goal of treatment?
 - Time of discharge?
 - When to withdraw support?
 -and so on
Incidence of hematological malignancies in The Netherlands

![Incidence chart showing numbers for different years and types of hematological malignancies.](chart.png)
Swedish cancer registry group: 5-years survival of AML

Decreasing ICU mortality: 35-60%

- **2009:**
 n= 3147 patients, 198 ICUs in European countries
 Taccone et al Critical Care 13(1):R15

- **2009:** ICNARC data (1995-2007):
 n=7689 admissions in 178 UK ICUs
 Hampshire et al Critical Care 13: R137

- **2012:** cancer ICU (2004-2009):
 n=199 patients
 Bird et al Brit Journal of Anaesthesia 108(3):452
Trends in survival of hematological malignancies in the Netherlands

Years of diagnosis

Survivors

- **AML**
 - 1-year
 - 3-years
 - 5-years
 - 10-years

- **MM**
 - 1-year
 - 3-years
 - 5-years
 - 10-years

- **CML**
 - 1-year
 - 3-years
 - 5-years
 - 10-years

- **CLL**
 - 1-year
 - 3-years
 - 5-years
 - 10-years

[Graphs showing survival rates for each type of hematological malignancy over different years from 1989 to 2011]
Indications for ICU admission

- Cancer-related
 (critical organ infiltration)

- Treatment-related
 (sepsis, drug toxicity)

- Co-morbid illnesses
 (kidney disease, heart failure, COPD)
Reason for ICU admission [n (%)]

<table>
<thead>
<tr>
<th>Reason</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td>67</td>
<td>33.7</td>
</tr>
<tr>
<td>Cardiac</td>
<td>14</td>
<td>7.0</td>
</tr>
<tr>
<td>Renal</td>
<td>16</td>
<td>8.0</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>6</td>
<td>3.0</td>
</tr>
<tr>
<td>Neurology</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>Postoperative</td>
<td>40</td>
<td>20.1</td>
</tr>
<tr>
<td>Sepsis</td>
<td>42</td>
<td>21.1</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Unknown</td>
<td>6</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Organ support on ICU [n (%)]

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive mechanical ventilation</td>
<td>95</td>
<td>51.9</td>
</tr>
<tr>
<td>Renal replacement therapy</td>
<td>79</td>
<td>40.9</td>
</tr>
<tr>
<td>Vasopressors</td>
<td>87</td>
<td>51.5</td>
</tr>
<tr>
<td>Inotropes</td>
<td>13</td>
<td>8.1</td>
</tr>
</tbody>
</table>
Australian retrospective study (1999-2010, n=505): newly diagnosed AML patients admitted to the ICU during chemotherapy

83 patients (16.4%); 92 admissions

Jackson et al., Leukemia & Lymphoma, January 2014; 55(1): 97–104
French multicenter study (1997-2004, n=1753 patients, n=28 ICUs): ICU mortality related to the number of organ failures

Organ failures:
- hematological (neutropenia)
- renal (replacement therapy)
- respiratory (invasive ventilation)
- cardiovasculair (vasopressor use)
- neurological (coma)
French prospective study of cancer patients (n=188; hematological malignancies n=132): changes in organ dysfunction scores at ICU

Variables predictive for in-hospital mortality in multivariate analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds ratio</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive mechanical ventilation</td>
<td>3.03</td>
<td>1.33 – 6.90</td>
</tr>
<tr>
<td>Failure of ≥2 organ systems</td>
<td>5.62</td>
<td>2.30 – 13.70</td>
</tr>
</tbody>
</table>

Neutropenia, transplantation status and APACHE II score were not predictive

Bird et al Brit Journal of Anaesthesia 108(3):452
Australian retrospective study (1999-2010): long-term outcome of newly diagnosed AML patients admitted to ICU during chemotherapy

350 patients received 578 chemotherapy cycles

Jackson et al., Leukemia & Lymphoma, January 2014; 55(1): 97–104
Spanish prospective observational study (June 2007-September 2008); n=62): prognostic factors after ICU discharge

ECOG score at discharge

Pre-planned treatment

Bernal et al. Critical Care 2013, 17:R302 ; ECOG: Eastern Cooperative Oncology Group
Dutch retrospective study (2008-2010): Health related quality of life (HRQoL) of patients with hematological malignancies: 18 months after ICU discharge

responders of questionary: n=269
Mortality by clinical condition estimated by the intensivist at triage

Too well, n=47
20%

Too sick, n=54
75%

ICU admission, n=105
45%

Log-rank $P < .0001$

Time (days) After the ICU Admission Request

Thiéry et al. JCO 2005;23:4406-4413
Mortality by survival time estimated by the intensivist at triage

Thiéry et al. JCO 2005;23:4406-4413
French retrospective study (1998-2008): newly diagnosed AML without organ failure

Early-ICU = admission at presentation; Late-ICU = admission from hematological ward

French prospective study (2005-2007): survival of cancer patients according to time between respiratory symptoms onset and ICU admission

84% of the patients had hematological malignancies

Mokart et al. Leukemia & Lymphoma, August 2013; 54(8): 1724–1729
Cancer patients admitted to ICU: (2010): outcomes between early- (n=100; ≤ 1.5h) and late-intervention (n=99; > 1.5h) groups

<table>
<thead>
<tr>
<th></th>
<th>Early intervention % (n)</th>
<th>Late intervention % (n)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU mortality</td>
<td>10 (10)</td>
<td>52 (51)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>In-hospital mortality</td>
<td>32 (32)</td>
<td>73 (72)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

n=95 hematological malignancies; n=104 solid tumors

Medical emergency team strategy:
1. Call for help using a score system
2. <10 minutes arrival
3. <30 minutes assessment and treatment plan

Some truths about cancer patients needing ICU support

• Short-term survival after critical illness has improved

• Subgroups of patients continue to have high mortality

• 3-days of ICU-trial is warranted before making a final decision.

• Early admission to ICU is recommended.

• A balance between noninvasive treatments and avoiding delays in optimal therapies should be made

• Close collaboration need to be developed between intensivists and hematologists in the management of patients.

ICU advances in the management of critically ill cancer patients

- Less restrictive admission policies
- Use of noninvasive mechanical ventilation
- Diagnostic strategy in acute respiratory failure
- Management of acute kidney injury
- Advances in antifungal agents
- Recognizing drug-related organ toxicities
Treatment decision model: hematological malignancies and ICU support

HOVON and Netherlands Society of Intensive Care

- **Head of the workgroup**
 Prof. dr. N.M.A Blijlevens, hematologist Radboudumc Nijmegen

- **Workgroup members**
 Dr. A. Broers, hematologist Erasmus MC Rotterdam
 Dr. M. Durian, hematologist Elizabethziekenhuis Tilburg
 Drs. P.L.J. van der Heiden, intensivist, LUMC Leiden
 Dr. M. Hilkens, intensivist Radboudumc Nijmegen
 Dr. N. Kusadasi, hematologist and intensivist, Erasmus MC Rotterdam en Vlietland Ziekenhuis Schiedam
 Dr. M.C. Muller, intensivist, AMC Amsterdam
 M.C.E. Schoordijk, nurse-specialist VUmc Amsterdam
 Dr. L.F.R. Span, hematologist, UMCG Groningen
 M. van Vliet, nurse-specialist Radboudumc Nijmegen
 Dr. D.J. van Westerloo, intensivist LUMC Leiden

Acknowledgements: workgroup hemato-oncological malignancies and ICU support