Medical Genetics Center (MGC)

- Molecular and cellular basis of genome instability in cancer
- Bioinformatics
- Gene-expression during embryonal development
- Gene-therapy
- Chromatin regulation in development and disease
- Pathophysiology and treatment of chloride channel diseases
- Forensic molecular biology
- Clinical and experimental aspects of embryogenesis and early placental development
- Development disorders and congenital malformations
- Reproduction and development
- Identification and characterisation of disease genes
Programme design in brief

Preserving the genome is of prime importance to all living systems. However, the integrity of DNA, the carrier of genetic information, is continuously threatened by endogenous and exogenous agents and by intrinsic instability of chemical bonds in DNA itself. Oxidative stress, UV- and X-rays and numerous chemicals induce a wide variety of lesions in DNA. Obviously, this affects proper functioning of the DNA and can lead to cell death, cancer, inborn disorders, and overall functional decline contributing to ageing. To counteract the gradual erosion of the vital genetic information and prevent its pleiotropic detrimental consequences an intricate network of genome care-taking and protection systems has evolved. DNA repair pathways and cell cycle control mechanisms constitute an important component of this genome protection network. The overall objective of this program is to understand the molecular mechanism and the biological impact of the systems designed to preserve the vital genetic material. Our primary objectives are:

1. understanding of the molecular mechanisms, specificity, fidelity and in vivo functioning of major multi-enzyme repair and damage-response pathways: nucleotide excision repair (NER), double strand break (dsb) repair and replication damage tolerance mechanisms, as well as damage-induced cell cycle arrest.
2. elucidation of the molecular defects of genetic disorders with NER (and transcription) deficiencies: xeroderma pigmentosum (XP), Cockayne’s syndrome and trichothiodystrophy. These diseases are characterized by sun (UV) sensitivity, frequently neurological abnormalities, poor development, frequently features of premature ageing and in case of XP predisposition to skin cancer. A second goal is to identify human conditions associated with impaired dsb repair, damage tolerance, or cell cycle response.
3. generation of mouse models for human NER, dsb repair and damage tolerance deficiencies to assess the biological impact of these systems. The approaches followed include isolation and functional characterization of mammalian repair genes and proteins, analysis of these proteins in vitro and in living cells, their involvement in human repair syndromes, their use for inducing specific repair defects in the mouse germ-line by gene targeting as well as analysis of defects in these systems at the level of mRNA expression (genomics) and proteins (proteomics).

Insight into DNA repair mechanisms is relevant for understanding the effect of DNA damage on vital processes as transcription, replication, recombination and cell cycle progression. Indirectly this process affects the origin of inborn defects, carcinogenesis, genome stability and ageing. Finally, a new line of research is aimed at elucidating the intriguing molecular mechanism and biological impact of the circadian clock in mammals

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SPtot</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Ttot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Ptot</th>
</tr>
</thead>
<tbody>
<tr>
<td>biochemistry</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>genetics</td>
<td>15,23</td>
<td>10,9</td>
<td>11,54</td>
<td>5,75</td>
<td>43,42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15,23</td>
<td>10,9</td>
<td>12,54</td>
<td>5,75</td>
<td>44,42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theses

Article/Letter to the editor

Part of book - abstract

EMC MGC-02-02-01 – Bioinformatics

Programme design in brief

In collaboration with other departments the department of Bioinformatics multidisciplinary team supports projects that generate genomics and proteomics data from basis research, forensics studies, molecular diagnostics and clinical trials. The center also runs a research program of its own, which provides the biological and technological basis of all the other activities. It concentrates on the way the genome as a whole contributes to the evolution, development, structure and function of the brain. Among others it involves analysis of gene expression in cells of the brain and combines genomics, proteomics and cytogenetic data to identify genes associated with neurological disorders. The Erasmus MC Bioinformatics department initiated a translational medicine program. This effort will assist in the critical task of moving medical research closer to commercial Ready medical technology that can be applied within and outside Erasmus University Medical Center. Moving medicine forward requires data integration from Bench to Bedside and from Patient to Population. The bioinformatics department plays a central role in linking research data onto clinical data using state of the art ICT technology and medical informatics expertise. The ultimate goal is to identify biomarkers linking genotypic data and phenotypic data to support processes such as determination of genetic risk, patient stratification, disease staging, treatment selection and evaluation of outcome to improve the quality of life of the patient. This strategy will also provide insight in environmental factors, lifestyle Information, and treatment history that correlate with the natural history of the disease

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SPtot</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Ttot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Ptot</th>
</tr>
</thead>
<tbody>
<tr>
<td>bioinformatics</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

Article/Letter to the editor

Programme design in brief

Research is aimed at two main interests; the development of the hemapoietic system and the development of the brain including the neural crest. Study of the hemapoietic system is focussed on two different aspects, the control of gene expression during development and differentiation and on the processes that underlie the induction of the hematoepoietic at different times of development. The control of gene expression is mainly focussed on the regulation of transcription of the globin genes and the transcription factors involved in this process. We are also very interested in B cell development, a cell type that responds to an ordered set of cell surface signals for its development resulting in the rearrangement of immunoglobulin genes. These studies are focused on one of the genes involved in signalling and the genes that are responsible for the rearrangement process. Hemopoietic induction is mainly focussed on the characterization of early stem cells that form the foetal/adult blood system. The study of the development of neural crest cells and the brain is focused on three separate areas. Firstly, we are interested in the molecular controls underlying Schwann cell development, secondly the molecular defects that underlie DiGeorge’s syndrome and thirdly the relationship between cellular structure and function in the brain. Included in the last programme is the elucidation of the molecular defects in Alzheimer’s disease

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SPtot</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Ttot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell biology</td>
<td>26.14</td>
<td>9.59</td>
<td>0</td>
<td>0.19</td>
<td>35.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>genetics</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neurosciences</td>
<td>0.5</td>
<td>0.72</td>
<td>0</td>
<td>0</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>26.64</td>
<td>11.31</td>
<td>0</td>
<td>0.19</td>
<td>38.14</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>23</td>
<td>4</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Theses

Article/Letter to the editor

EMC MGC-02-13-03 - Gene-therapy

Programme design in brief

Research is centered towards some fundamental mechanisms which determine the development of disease specific gene therapies. The diseases under study are: cystic fibrosis, thalassemia, immunodeficiencies, Crigler Najjar, neoplasia and restenosis. The present and future research is focused on the development of non viral delivery vehicles with particular attention to the process of the transport of DNA into the nucleus in non dividing cells and the integration of DNA into the host genome. In addition we are developing replicating vectors based on papilloma virus replication origins. Part of this project is a joint effort with the department of Pediatrics (OR-01-54-02), Cardiology (COEUR-06-43-06) and Surgery (COEUR-04-43-04)

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SPlot</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Ttot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Ptot</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell biology</td>
<td>10.21</td>
<td>4.54</td>
<td>0.5</td>
<td>1.8</td>
<td>17.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neurosciences</td>
<td>0.38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10.59</td>
<td>4.54</td>
<td>0.5</td>
<td>1.8</td>
<td>17.43</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

Theses

Article/Letter to the editor

Lie, J.T., Moerland, M., Gent, T. van, Haperen, R. van, Scheek, L.M., Sadeghi Niaraki, M., Crom, R. de & Tol, A. van (2006). Sex differences in atherosclerosis in mice with elevated phospholipid transfer protein activity are related to decreased plasma high density lipoproteins and not to increased production of triglycerides. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1761(9), 1070-1077.

EMC MGC-02-21-01 - Chromatin regulation in development and disease

Programme design in brief

The goal of this research program is to understand the mechanism of gene expression control during development and disease. We are interested in how the expression of the eukaryotic genome is regulated. In particular, we focus on the role of chromatin regulation in development and disease. Over the last decade or so, it has become clear that chromatin structure forms an integral part of the mechanisms by which gene transcription is controlled in eukaryotic cells. Our studies focus on three related topics: (1) The role of SWI/SNF-class ATP-dependent chromatin remodeling complexes in transcription regulation during development and disease. (2) Transcription control by protein (de)ubiquitylation. (3) Mechanism of gene silencing by Polycomb group proteins. For many of our studies, we use Drosophila as a model organism because it allows an integrated combination of biochemistry, proteomics and developmental genetics. In addition, we investigate the mechanism of tumor suppression by hSNF5, a core subunit of human SWI/SNF remodeling complexes. For these studies we use human tumor cell lines and mouse models. Moreover, we investigate the role of protein (de)ubiquitylation in human cancer. Finally, we are interested in how Polycomb group silencers and chromatin remodeling factors mediate epigenetic control of the INK/ARF tumor suppression locus and its effect on human disease and (stem) cell differentiation.

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SPtot</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Ttot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Ptot</th>
</tr>
</thead>
<tbody>
<tr>
<td>biochemistry</td>
<td>9.71</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cell biology</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10.71</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.71</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Theses

Article/Letter to the editor

EMC MGC-02-21-02 - Pathophysiology and treatment of chloride channel diseases

Programme in brief design

The transport of anions across cellular membranes is crucial for a broad range of functions, including transport of salt and water across epithelia, the regulation of cell volume, ionic homeostasis of intracellular organelles, exocytosis, pH regulation and the control of electrical excitability of muscle and nerves. This programme focuses on chloride channels involved in transepithelial ion transport (CFTR, bestrophins) and cell volume regulation (VRAC). Mutation or dysregulation of these chloride channels underlies a large spectrum of diseases including cystic fibrosis (CF), secretory diarrhea (e.g. cholera), pulmonary oedema, asthma and retinal degeneration. How mutations in the CFTR chloride channel affect the folding, processing, membrane recycling and gating of this protein and its regulation of other ion transporters such as sodium-hydrogen and chloride-bicarbonate exchangers is studied by biochemical and electrophysiological techniques at the level of cultured cells and CF mouse models. A major new research goal of the group is the in vivo rescue of mutant-CFTR function in CF mice by pharmacological approaches, and the ex vivo testing of promising candidate drugs by bioelectric assays in rectal biopsies and nasal mucosa from cystic fibrosis patients (carried out in collaboration with Drs. M. Sinaasappel and H. Tiddens from the Sophia Children’s Hospital; see EMC MM-04-54-07). In addition, new approaches are explored to prevent excessive salt-and water loss in diarrheal diseases by interfering with transmembrane signaling by microbial enterotoxins or by the development of specific CFTR channel inhibitors

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SPtot</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Ttot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Ptot</th>
</tr>
</thead>
<tbody>
<tr>
<td>biochemistry</td>
<td>6.55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>6.55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Article/Letter to the editor

Part of book - abstract

EMC MGC-02-26-01 - Forensic molecular biology

Programme design in brief:

The Department of Forensic Molecular Biology is a joined initiative of the Erasmus University Medical Center (Erasmus MC), the Erasmus University and the Netherlands Forensic Institute (NFI). We are using state-of-art technologies in genetics, genomics and proteomics to answer questions in human molecular biology and human molecular genetics that are of fundamental scientific interest and in addition provide potential applications to forensic sciences. Research topics are initiated by more current issues in forensic molecular biology such as the identification of the type of tissue and the age of a sample found at the crime scene, or the identification and interpretation of a male component using Y chromosome genetic information, or the identification of the geographic ancestry of an unknown DNA sample using genetic information, but also by more future issues such as the potential use of genetic information that indirectly or directly allows prediction of externally visible characteristics of humans. In addition, we study lethal disorders and unexplained death to understand their biology and to develop biomarkers for future molecular autopsy. We are also using human genetic variation to investigate relationships, origins and migration history of human populations and are interested in footprints of local adaptation and natural selection in the human genome.

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SPlot</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Ttot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Ptot</th>
</tr>
</thead>
<tbody>
<tr>
<td>forensic molecular biology</td>
<td>2.65</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.65</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>2.65</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.65</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Article/Letter to the editor

Programme design in brief

Description of the objectives: The following objectives are addressed:

a: the significance of two- and three-dimensional real-time and colour Doppler ultrasound for the diagnosis of fetal structural anomalies and abnormal placental development in early pregnancy (in collaboration with the Dept. of Clinical Genetics);

b: psychological and medico-ethical aspects of late intrauterine diagnosis of lethal anomalies (>24 weeks) (in collaboration with the Depts of Medical Psychology, Bioethics and Clinical Genetics);

c: genetic and immunological aspects of abnormal placental development in relation to preeclampsia (also in collaboration with “Generation R”)

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SPtot</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Ttot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Ptot</th>
</tr>
</thead>
<tbody>
<tr>
<td>anesthesiology</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>clinical genetics</td>
<td>0,05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>gynaecology/obstetrics</td>
<td>2,1</td>
<td>0,05</td>
<td>0</td>
<td>0</td>
<td>2,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,25</td>
</tr>
<tr>
<td>immunology</td>
<td>0</td>
<td>0,2</td>
<td>0</td>
<td>0</td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,2</td>
</tr>
<tr>
<td>Total</td>
<td>3,15</td>
<td>0,25</td>
<td>0</td>
<td>0</td>
<td>3,4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>44</td>
<td>8</td>
<td>7</td>
<td>61</td>
</tr>
</tbody>
</table>

Theses

Article/Letter to the editor

Part of book - abstract

Programme design in brief

The aim of this programme is to gain insight into the causes and effects of developmental disorders and congenital malformations. Various methods are employed. The first two subprogrammes (a, b) are based on a toxicologically-induced abnormal, or an existing and inbred phenotype, respectively, and attempt to map the genotype and associated gene products. Human material was recently included in the analyses. The third subprogramme (c) attempts to identify candidate genes, to analyse their products, and to define the process leading to the associated (abnormal) phenotype, using human material harvested during operative repair. Subprogramme (d) assesses the long-term medical, psychosocial and socially-relevant effects of the treatment of congenital malformations.

Subprogrammes:

a. The role of hormones and that of the genes expressed during normal and abnormal lung development are studied in a reproducible rat model of abnormal lung development induced by Nitrofen, in transgenic mice, and in organotypic cultures of embryonic lung buds.

b. Pathophysiologic and genetic characterization of the development of chronic renal insufficiency, and its possible prevention and treatment. Mainly the spontaneously hypertensive fawn-hooded (FHH) rat strain is used, which develops proteinuria and kidney damage at an early age and dies prematurely from end-stage renal failure. The susceptibility to develop renal damage is influenced by at least five genes, named Rf-1 to Rf-5. Main efforts are currently directed at pathophysiologic changes induced by the five Rf-loci and at the identification and functional characterization of Rf-1 on rat chromosome 1.

c. To elucidate the phenotype-genotype relationship of derivatives of the foregut human material collected during operative repair, and combined with genomics and proteomics approaches to identify mutations. These data are combined with data from animal experiments using mutant mice evaluating the role of candidate genes during normal and abnormal phenotype expression.

d. Short-term and long-term follow-up studies of somatically and psychosocially (quality of life) of congenital malformations, especially related to parental support, nutritional assessment, pain management in pediatric surgical patients in the perioperative period, and management of undescended testes

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SPtot</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Tot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Ptot</th>
</tr>
</thead>
<tbody>
<tr>
<td>anesthesiology</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.89</td>
</tr>
<tr>
<td>family practice</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.09</td>
</tr>
<tr>
<td>pediatrics</td>
<td>0.38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.17</td>
</tr>
<tr>
<td>pediatric surgery</td>
<td>5.51</td>
<td>0.59</td>
<td>0</td>
<td>3.17</td>
<td>9.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54.00</td>
</tr>
<tr>
<td>Total</td>
<td>6.89</td>
<td>0.59</td>
<td>0</td>
<td>3.17</td>
<td>10.65</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>34</td>
<td>6</td>
<td>9</td>
<td>54.00</td>
</tr>
</tbody>
</table>

Theses

Veugelers, R. (2006, november 22). A population-based study on comorbidity in children with severe motor and intellectual disabilities: focus on feasibility and prevalence. EUR (164 pag.) Prom./coprom.: Prof.Dr. H.M. Evenhuis, Prof.dr. D. Tibboel & Dr. C. Penning.

Article/Letter to the editor

Klaassens, M., Scott, DA, Dooren, M.F. van, Hochstenbach, R., Eussen, H.J.F.M.M., Cai, WW, Galjaard, R.J.H.,

of a QTL on chromosome 1 for impaired autoregulation of RBF in fawn-hooded hypertensive rats. American Journal
of Physiology-Renal Physiology, 290(5), F1213-F1221.

metalloproteinases and tissue inhibitors of metalloproteinases in the lungs of congenital diaphragmatic hernia

Danhof, M (2006). Pharmacokinetics and pharmacodynamics of midazolam and metabolites in nonventilated infants
after craniofacial surgery. Anesthesiology, 105(6), 1135-1146.

Peeters, MYM, Prins, S.A., Knibbe, C.A.J., De Jongh, J, Schai, R.H.N. van, Dijk, M. van, Heiden, I.P. van der,
Tibboel, D. & Danhof, M (2006). Propofol pharmacokinetics and pharmacodynamics for depth of sedation in
nonventilated infants after major craniofacial surgery. Anesthesiology, 104(3), 466-474.

pharmacokinetics during venoarterial extra corporeal membrane oxygenation in neonates. Clinical Pharmacokinetics,
45(7), 705-714.

Markant, 4, 21.

Care Medicine, 32, 1103-1105.

(2006). Spatial and temporal expression of glucocorticoid, retinoid, and thyroid hormone receptors is not altered in
lungs of congenital diaphragmatic hernia. Pediatric Research, 60(6), 693-698.

Ghrelin expression in human and rat fetal lungs and the effect of ghrelin administration in nitrofen-induced congenital
diaphragmatic hernia. Pediatric Research, 59(4), 531-537.

Schaart, M.W., Yamanouchi, T., Nispenn, D.J.P.M. van, Raatgeep, H.C., Goudoever, J.B. van, Krijger, R.R.de, Tibboel, D.,
Einerhand, A.W.C. & Renes, I.B. (2006). Does small intestinal atresia affect epithelial protein expression in

congenital diaphragmatic hernia is associated with decreased vascular expression of nitric-oxide synthase. Cell
Biochemistry and Biophysics, 44(1), 147-155.

Medicine, 11, 227-231.

kortdarmsyndroom bij kinderen; dieet en hormoontherapie. Tijdschrift voor Kindergeneeskunde, 74, 160-162.

genes influence proximo-distal morphogenesis during rat lung development. American Journal of Physiology-Lung
Cellular and Molecular Physiology, 290(4), L777-L789.

Veugelers, R., Penning, C., Grootscholten, S.P.J., Merkus, P.J.F.M., Arrets, H.G.M., Rieken, R., Brussee, J.E.,
Jilderda-Janssen, M., Tibboel, D. & Evenhuis, H.M. (2006). Should we use criteria or eyeballing to reject post-

Part of book - abstract

EMC MGC-02-82-01 - Reproduction and development

Programme design in brief

The research program focuses on regulation and dysregulation of development of the gonads and the genital system, sex differentiation, and gametogenesis in males and females. The program is directly linked to sex differentiation disorders, male and female infertility, and cancers of the reproductive system. Hence it involves collaboration with the clinical disciplines Pediatric Endocrinology and Urology, Gynecological Oncology, Reproductive Medicine (including Andrology), Experimental Pathology, and Clinical Genetics.

Gametogenesis (spermatogenesis and oogenesis) includes mitotic expansion of cells, meiotic recombination of genetic information, and unfolding of dedicated gene expression programs. Molecular and cellular factors implicated in control of gametogenesis are studied in genetically modified mouse models, also using cellular imaging technology. To facilitate transfer of knowledge to the clinic, the focus is on genes and proteins that are conserved between mouse and human. We study the roles of growth and differentiation factors in (dys)regulation of testicular and ovarian cell-cell interactions and development of ovarian sexcord-stromal tumors. Furthermore, we study gametogenic and early embryonic chromatin rearrangements, X chromosome inactivation, and gene expression, since we feel that this is highly relevant in relation to evaluation of possible risk factors associated with application of assisted reproduction techniques. Collaboration with a pharmaceutical company addresses identification of molecular targets for non-hormonal contraception.

Gonadal steroid hormones play essential roles in regulation of male and female gonadal functions, sex differentiation, and development and maintenance of reproductive functions. The focus of this part of the research program is on molecular and cellular mechanisms of action of steroid hormones and analogues, involving the androgen receptor, the estrogen receptors alpha and beta, and the progesterone receptors A and B. Mechanistic and functional differences between different steroid hormone receptors, as to identity and properties of interacting proteins and receptor activities in the absence of ligand, are studied. Using mouse models and human cell lines, we aim to identify regulatory factors involved in development and regulation of the male and female reproductive systems, with special emphasis on tissue-specific actions of androgens and other steroid hormones in growth and metastasis of endometrium cancers. In collaboration with a pharmaceutical company the program includes molecular analysis of the bioactivity of several steroid hormone analogues.

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SProt</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Ttot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Ptot</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell biology</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gynaecology/obstetrics</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reproduction and development</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

Article/Letter to the editor

Part of book - abstract

Identification and characterisation of disease genes will offer the opportunity for genetic counselling of couples with an enhanced genetic risk. In this project we will develop methods to study single gene disorders as well as polygenic / multifactorial disorders in order to diagnose a (genetic) defect in patients and carriers. For several disorders the genetic and cellular defect will be studied by isolating the responsible gene (positional cloning) followed by characterizing of the cellular defect or by characterizing and purifying the protein involved and subsequent isolation of the gene. We will study the gene defects and this will allow us to study the relation between the gene mutation and the cellular defects (genotype / phenotype relation). These methods have been used successfully to elucidate the etiology and pathogenesis of the fragile X syndrome and tuberous sclerosis.

At the same time we are studying lysosomal storage disorders and genetic factors involved in neurogenetic disorders (together with the department of Neurology (NEU440201) and Epidemiology (GZZ640101). Within families with hereditary hand malformations the genetic defect will be searched for via positional cloning of the responsible gene(s). In animal models the embryonal development of the limb will be studied to gain more insight into the function of the identified genes (together with the department of Plastic Surgery (HKG500101) and Anatomy (ANA100306)).

After genetic counselling is has been shown that 50-90% of parents with a high genetic risk decide not to have more children. For most parents this is a difficult decision and offering the opportunity of prenatal diagnosis (followed eventually by a termination of the pregnancy) is of great relief for the parents. The second purpose of this project is to develop fast and reliable methods for prenatal diagnosis of inborn/hereditary disorders.

Key figures

<table>
<thead>
<tr>
<th>Department</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SPtot</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Ttot</th>
<th>IS</th>
<th>FS</th>
<th>OP</th>
<th>Ptot</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell biology</td>
<td>0</td>
<td>0</td>
<td>0,2</td>
<td>0</td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinical genetics</td>
<td>12,23</td>
<td>2,75</td>
<td>1</td>
<td>0</td>
<td>15,98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>genetics</td>
<td>0</td>
<td>0,6</td>
<td>0</td>
<td>0</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neurology</td>
<td>0</td>
<td>1,75</td>
<td>0</td>
<td>0</td>
<td>1,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12,23</td>
<td>5,1</td>
<td>1,2</td>
<td>18,53</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>88</td>
<td>4</td>
<td>9</td>
<td>107</td>
<td></td>
</tr>
</tbody>
</table>

Theses

Oostrom, I.I.H. van (2006, december 13). Family matters - adjustment to genetic cancer susceptibility testing. EUR (159 pag.). Prom./coprom.: Prof.Dr. A. Tibben & Dr. E.J. Heijboer.

Pardo Cortes, L.M. (2006, oktober 04). Genetic study of cognitive functions. EUR (127 pag.). Prom./coprom.: Prof.Dr.Ir. C.M. van Duijn & Prof.Dr. B.A. Oostra.

Article/Letter to the editor

Part of book - abstract

